The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization.
نویسندگان
چکیده
Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe3 O4 ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.
منابع مشابه
A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria.
In magnetotactic bacteria, a number of specific proteins are associated with the magnetosome membrane (MM) and may have a crucial role in magnetite biomineralization. We have cloned and sequenced the genes of several of these polypeptides in the magnetotactic bacterium Magnetospirillum gryphiswaldense that could be assigned to two different genomic regions. Except for mamA, none of these genes ...
متن کاملStructure prediction of magnetosome-associated proteins
Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are con...
متن کاملGenomics, genetics, and cell biology of magnetosome formation.
Magnetosomes are specialized organelles for magnetic navigation that comprise membrane-enveloped, nano-sized crystals of a magnetic iron mineral; they are formed by a diverse group of magnetotactic bacteria (MTB). The synthesis of magnetosomes involves strict genetic control over intracellular differentiation, biomineralization, and their assembly into highly ordered chains. Physicochemical con...
متن کاملThe MagA protein of Magnetospirilla is not involved in bacterial magnetite biomineralization.
Magnetotactic bacteria have the ability to orient along geomagnetic field lines based on the formation of magnetosomes, which are intracellular nanometer-sized, membrane-enclosed magnetic iron minerals. The formation of these unique bacterial organelles involves several processes, such as cytoplasmic membrane invagination and magnetosome vesicle formation, the accumulation of iron in the vesicl...
متن کاملComprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle.
Although membrane-bounded compartments are commonly considered a unique eukaryotic characteristic, many species of bacteria have organelles. Compartmentalization is well studied in eukaryotes; however, the molecular factors and processes leading to organelle formation in bacteria are poorly understood. We use the magnetosome compartments of magnetotactic bacteria as a model system to investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 107 4 شماره
صفحات -
تاریخ انتشار 2018